3.178 \(\int \frac {\sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=213 \[ \frac {8 a (16 A+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {16 a (16 A+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \]

[Out]

2/63*a*A*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+2/105*a*(16*A+21*C)*sin(d*x+c)/d/cos(d*x+c)^(5/2
)/(a+a*cos(d*x+c))^(1/2)+8/315*a*(16*A+21*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+16/315*a*(16
*A+21*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/9*A*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d/cos(d*
x+c)^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 213, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3044, 2980, 2772, 2771} \[ \frac {8 a (16 A+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {16 a (16 A+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(2*a*A*Sin[c + d*x])/(63*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(16*A + 21*C)*Sin[c + d*x])/(10
5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (8*a*(16*A + 21*C)*Sin[c + d*x])/(315*d*Cos[c + d*x]^(3/2)*
Sqrt[a + a*Cos[c + d*x]]) + (16*a*(16*A + 21*C)*Sin[c + d*x])/(315*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x
]]) + (2*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2))

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx &=\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {a A}{2}+\frac {3}{2} a (2 A+3 C) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx}{9 a}\\ &=\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{21} (16 A+21 C) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{105} (4 (16 A+21 C)) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (16 A+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{315} (8 (16 A+21 C)) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a A \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (16 A+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a (16 A+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 124, normalized size = 0.58 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} (2 (88 A+63 C) \cos (c+d x)+11 (16 A+21 C) \cos (2 (c+d x))+32 A \cos (3 (c+d x))+32 A \cos (4 (c+d x))+214 A+42 C \cos (3 (c+d x))+42 C \cos (4 (c+d x))+189 C)}{315 d \cos ^{\frac {9}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*(214*A + 189*C + 2*(88*A + 63*C)*Cos[c + d*x] + 11*(16*A + 21*C)*Cos[2*(c + d*x)]
+ 32*A*Cos[3*(c + d*x)] + 42*C*Cos[3*(c + d*x)] + 32*A*Cos[4*(c + d*x)] + 42*C*Cos[4*(c + d*x)])*Tan[(c + d*x)
/2])/(315*d*Cos[c + d*x]^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 115, normalized size = 0.54 \[ \frac {2 \, {\left (8 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )^{2} + 40 \, A \cos \left (d x + c\right ) + 35 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right )^{6} + d \cos \left (d x + c\right )^{5}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

2/315*(8*(16*A + 21*C)*cos(d*x + c)^4 + 4*(16*A + 21*C)*cos(d*x + c)^3 + 3*(16*A + 21*C)*cos(d*x + c)^2 + 40*A
*cos(d*x + c) + 35*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^6 + d*cos(d*x +
 c)^5)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.38, size = 121, normalized size = 0.57 \[ -\frac {2 \left (-1+\cos \left (d x +c \right )\right ) \left (128 A \left (\cos ^{4}\left (d x +c \right )\right )+168 C \left (\cos ^{4}\left (d x +c \right )\right )+64 A \left (\cos ^{3}\left (d x +c \right )\right )+84 C \left (\cos ^{3}\left (d x +c \right )\right )+48 A \left (\cos ^{2}\left (d x +c \right )\right )+63 C \left (\cos ^{2}\left (d x +c \right )\right )+40 A \cos \left (d x +c \right )+35 A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{315 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x)

[Out]

-2/315/d*(-1+cos(d*x+c))*(128*A*cos(d*x+c)^4+168*C*cos(d*x+c)^4+64*A*cos(d*x+c)^3+84*C*cos(d*x+c)^3+48*A*cos(d
*x+c)^2+63*C*cos(d*x+c)^2+40*A*cos(d*x+c)+35*A)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)/cos(d*x+c)^(9/2)

________________________________________________________________________________________

maxima [B]  time = 0.54, size = 567, normalized size = 2.66 \[ \frac {2 \, {\left (\frac {21 \, C {\left (\frac {15 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {25 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {17 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {7 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} + \frac {A {\left (\frac {315 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {735 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {1302 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {1206 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {431 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {107 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{5}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {11}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {11}{2}} {\left (\frac {5 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {10 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {10 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {5 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + \frac {\sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + 1\right )}}\right )}}{315 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

2/315*(21*C*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x +
 c) + 1)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*
x + c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(
d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c)
 + 1)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)) + A*(315*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) -
 735*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 1302*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) +
 1)^5 - 1206*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 431*sqrt(2)*sqrt(a)*sin(d*x + c)^9/(cos(d*x
 + c) + 1)^9 - 107*sqrt(2)*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2
 + 1)^5/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11/2)*(5*sin(d*x
 + c)^2/(cos(d*x + c) + 1)^2 + 10*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 10*sin(d*x + c)^6/(cos(d*x + c) + 1)^6
 + 5*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + sin(d*x + c)^10/(cos(d*x + c) + 1)^10 + 1)))/d

________________________________________________________________________________________

mupad [B]  time = 7.74, size = 611, normalized size = 2.87 \[ \frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (\frac {\left (256\,A+336\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {C\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}+\frac {C\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}-\frac {{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\left (256\,A+336\,C\right )\,1{}\mathrm {i}}{315\,d}+\frac {{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\left (1152\,A+1512\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\left (1152\,A+1512\,C\right )\,1{}\mathrm {i}}{315\,d}+\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\left (2016\,A+2016\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\left (2016\,A+2016\,C\right )\,1{}\mathrm {i}}{315\,d}\right )}{\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,8{}\mathrm {i}+d\,x\,8{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(11/2),x)

[Out]

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(((256*A + 336*C)*1i)/(315*d) - (C*exp(c*3i + d
*x*3i)*8i)/(3*d) + (C*exp(c*6i + d*x*6i)*8i)/(3*d) - (exp(c*9i + d*x*9i)*(256*A + 336*C)*1i)/(315*d) + (exp(c*
2i + d*x*2i)*(1152*A + 1512*C)*1i)/(315*d) - (exp(c*7i + d*x*7i)*(1152*A + 1512*C)*1i)/(315*d) + (exp(c*4i + d
*x*4i)*(2016*A + 2016*C)*1i)/(315*d) - (exp(c*5i + d*x*5i)*(2016*A + 2016*C)*1i)/(315*d)))/((exp(- c*1i - d*x*
1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*1i + d*x*1i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2)
 + 4*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*3i + d*x*3i)*(exp(- c*
1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 6*exp(c*4i + d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1
i)/2)^(1/2) + 6*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*6i + d*x*6i
)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp(c
*1i + d*x*1i)/2)^(1/2) + exp(c*8i + d*x*8i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*9i +
 d*x*9i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*(a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________